{"id":255711,"date":"2024-10-19T16:54:19","date_gmt":"2024-10-19T16:54:19","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-61850-90-62018\/"},"modified":"2024-10-25T12:22:23","modified_gmt":"2024-10-25T12:22:23","slug":"bsi-pd-iec-tr-61850-90-62018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-61850-90-62018\/","title":{"rendered":"BSI PD IEC TR 61850-90-6:2018"},"content":{"rendered":"
1.1<\/b> General<\/p>\n
The contents of Distribution Automation (DA) vary between different countries, regions, even between different utilities in the same country. DA may cover HV\/MV substations, MV networks, LV networks, distributed energy resources, as well as demand sides. This part of IEC 61850, which is a technical report, provides basic aspects that need to be considered when using IEC 61850 for information exchange between systems and components to support Distribution Automation applications, within MV network automation, as presented in Annex B.<\/p>\n
In particular, this document:<\/p>\n
defines use cases for typical DA applications that require information exchange between two or more components\/systems<\/p>\n<\/li>\n
provides modelling of components commonly used in DA applications<\/p>\n<\/li>\n
proposes new logical nodes and the extensions to the existing logical nodes that can be used in typical DA applications.<\/p>\n<\/li>\n
provides guidelines for the communication architecture and services to be used in DA applications<\/p>\n<\/li>\n
provides configuration methods for IEDs to be used in DA systems.<\/p>\n<\/li>\n<\/ul>\n
Its content also results from the merge of the preparatory work exposed in IEC TR 62689\u2011100 \u2013 Current and voltage sensors or detectors, to be used for fault passage indication purposes \u2013 Part 100: Requirements and proposals for the IEC 61850 series data model extensions to support fault passage indicators applications.<\/i><\/p>\n
1.2<\/b> Namespace name and version<\/p>\n
This new subclause is mandatory for any IEC 61850 namespace (as defined by IEC 61850\u20117\u20111:2011).<\/p>\n
Table 60 shows all attributes of (Tr)IEC61850\u201190\u20116:2018B namespace.<\/p>\n
Table 60<\/b><\/p>\n
Attributes of (Tr)IEC61850-90-6:2018B namespace<\/b><\/p>\n
1.3<\/b> Namespace Code Component distribution<\/p>\n
The Code Components are in light and full version:<\/p>\n
The full version is named : IEC_TR_61850-90-6.NSD.2018B.Full<\/i>.It contains definition of the whole data model defined in this standard with the documentation associated and access is restricted to purchaser of this part<\/p>\n<\/li>\n The light version is named : IEC_TR_61850-90-6.NSD.2018B.Light<\/i>. It doesn’t contain any documentations but contains the whole data model as per full version, and this light version is freely accessible on the IEC website for download at : \/2, but the usage remains under the licensing conditions.<\/p>\n<\/li>\n<\/ul>\n The Code Components for IEC 61850 data models are formated in compliance with the NSD format defined by the standard IEC 61850\u20117\u20117. Each Code Component is a ZIP package containing :<\/p>\n the electronic representation of the Code Component itself (possibly multiple files),<\/p>\n<\/li>\n the grammar files (XSD) enabling to check the consistency of the associated files against the defined version of NSD, but as well against the IEC 61850 flexibility rules in case of private extensions<\/p>\n<\/li>\n a file describing the content of the package (IECManifest.xml).<\/p>\n<\/li>\n<\/ul>\n The IECManifest contains different sections giving information on:<\/p>\n The copyright notice<\/p>\n<\/li>\n The identification of the code component<\/p>\n<\/li>\n The publication related to the code component<\/p>\n<\/li>\n The list of the electronic files which compose the code component<\/p>\n<\/li>\n An optional list of history files to track changes during the evolution process of the code component<\/p>\n<\/li>\n<\/ul>\n The life cycle of a code component is not restricted to the life cycle of the related publication. The publication life cycle goes through two stages, Version (corresponding to an edition) and Revision (corresponding to an amendment). A third publication stage (Release) allows publication of Code Component in case of urgent fixes of InterOp Tissues, thus without need to publish an amendment. Consequently new release(s) of the Code Component may be released, which supersede(s) the previous release, and will be distributed through the IEC TC57 web site at: \/2<\/span>. The latest version\/release of the document will be found by selecting the file named IEC_TR_61850-90-6.NSD.{VersionStateInfo}.Light<\/i> with the filed VersionStateInfo of the highest value.<\/p>\n Communication networks and systems for power utility automation – Use of IEC 61850 for Distribution Automation Systems<\/b><\/p>\n\n
\n
PDF Catalog<\/h4>\n
\n
\n PDF Pages<\/th>\n PDF Title<\/th>\n<\/tr>\n \n 2<\/td>\n undefined <\/td>\n<\/tr>\n \n 4<\/td>\n CONTENTS <\/td>\n<\/tr>\n \n 11<\/td>\n FOREWORD <\/td>\n<\/tr>\n \n 13<\/td>\n INTRODUCTION <\/td>\n<\/tr>\n \n 15<\/td>\n 1 Scope
1.1 General
1.2 Namespace information
1.3 Code components <\/td>\n<\/tr>\n\n 16<\/td>\n 2 Normative references <\/td>\n<\/tr>\n \n 17<\/td>\n 3 Terms, definitions, abbreviated terms and definitions of fault types <\/td>\n<\/tr>\n \n 18<\/td>\n 3.1 Terms and definitions
3.2 Abbreviated terms
3.2.1 Proposed specifically for the data model part of the report <\/td>\n<\/tr>\n\n 19<\/td>\n 3.2.2 Existing abbreviations used in the original IEC 61850 data object names model
Tables
Table 1 \u2013 Normative abbreviations for data object names
Table 2 \u2013 Normative abbreviations for data object names <\/td>\n<\/tr>\n\n 31<\/td>\n 3.3 Definitions of fault types
4 Common actors
Table 3 \u2013 Time based Fault types <\/td>\n<\/tr>\n\n 32<\/td>\n Figures
Figure 1 \u2013 Actors top level hierarchy <\/td>\n<\/tr>\n\n 33<\/td>\n Figure 2 \u2013 System Actors SGAM positioning (function) <\/td>\n<\/tr>\n \n 34<\/td>\n Figure 3 \u2013 System Actors SGAM positioning (not function related) <\/td>\n<\/tr>\n \n 35<\/td>\n Table 4 \u2013 List of common actors <\/td>\n<\/tr>\n \n 40<\/td>\n 5 Requirements and use cases
5.1 General <\/td>\n<\/tr>\n\n 41<\/td>\n 5.2 Use case 1: Fault indication and report
5.2.1 General
5.2.2 Use case 1a: Generic use case \u2013 Not fault type specific <\/td>\n<\/tr>\n\n 43<\/td>\n Figure 4 \u2013 Fault indication \u2013 Main use case <\/td>\n<\/tr>\n \n 44<\/td>\n Figure 5 \u2013 Fault indication for FPI \u2013 T1 <\/td>\n<\/tr>\n \n 45<\/td>\n Figure 6 \u2013 Fault indication and report for FPI \u2013 T2 <\/td>\n<\/tr>\n \n 46<\/td>\n Figure 7 \u2013 Fault indication for FPI \u2013 T3,T4 (with communication to HV\/MV SS)in the context of FLISR as described in 5.4 <\/td>\n<\/tr>\n \n 47<\/td>\n Figure 8 \u2013 Fault indication for FPI \u2013 T3,T4 (without communication to HV\/MV SS)in the context of FLISR as described in 5.4 <\/td>\n<\/tr>\n \n 60<\/td>\n 5.2.3 Use case 1b: Overcurrent non directional Fault Localization and Indication (F1C\/NC) <\/td>\n<\/tr>\n \n 61<\/td>\n 5.2.4 Use case 1c: Phase to earth faults, non directional fault detection (F2)
5.2.5 Use case 1d: Overcurrent and Phase to earth faults detection non directional (F3)
Figure 9 \u2013 Voltage Presence\/Absence <\/td>\n<\/tr>\n\n 62<\/td>\n 5.2.6 Use case 1e: Overcurrent, directional and non directional, fault detection (F4)
5.2.7 Use case 1f: Overcurrent, non directional, phase to earth faults, directional and non directional fault detection (F5)
5.2.8 Use case 1g: Overcurrent and phase to earth faults, directional and non directional fault detection (F6)
5.3 Use case 2: FLISR based on local control
5.3.1 General
5.3.2 Use case 2a: FLISR using sectionalizers detecting fault current <\/td>\n<\/tr>\n\n 65<\/td>\n Figure 10 \u2013 FLISR use case breakdown <\/td>\n<\/tr>\n \n 66<\/td>\n Figure 11 \u2013 Fault location sequence diagram <\/td>\n<\/tr>\n \n 67<\/td>\n Figure 12 \u2013 Fault isolation sequence diagram <\/td>\n<\/tr>\n \n 68<\/td>\n Figure 13 \u2013 Service restoration sequence diagram <\/td>\n<\/tr>\n \n 74<\/td>\n 5.3.3 Use case 2b: FLISR using sectionalizers detecting feeder voltage (SDFV) <\/td>\n<\/tr>\n \n 75<\/td>\n Figure 14 \u2013 A distribution grid configuration in a multi-sourcenetwork based on open loops <\/td>\n<\/tr>\n \n 77<\/td>\n Figure 15 \u2013 The basic behavior of distribution feederin FLISR using sectionalizers detecting feeder voltage <\/td>\n<\/tr>\n \n 78<\/td>\n Figure 16 \u2013 FLISR-SDFV use case break down <\/td>\n<\/tr>\n \n 79<\/td>\n Figure 17 \u2013 FLISR-SDFV Fault Location and Identification sequence diagram <\/td>\n<\/tr>\n \n 80<\/td>\n Figure 18 \u2013 FLISR-SDFV Fault Location and Identification sequence diagram
Figure 19 \u2013 FLISR-SDFV Fault Location and Identification sequence diagram <\/td>\n<\/tr>\n\n 81<\/td>\n Figure 20 \u2013 FLISR-SDFV Fault Location and Identification sequence diagram
Figure 21 \u2013 Auxiliary use cases for FLISR using SDFV <\/td>\n<\/tr>\n\n 82<\/td>\n Figure 22 \u2013 FLISR-SDFV Set X specific time sequence diagram
Figure 23 \u2013 FLISR-SDFV Set Y specific time sequence diagram
Figure 24 \u2013 FLISR-SDFV Release blocking of closing sequence diagram <\/td>\n<\/tr>\n\n 83<\/td>\n Figure 25 \u2013 FLISR-SDFV Set functional type sequence diagram
Figure 26 \u2013 FLISR-SDFV Set connection direction sequence diagram
Figure 27 \u2013 FLISR-SDFV Supervisory sequence diagram <\/td>\n<\/tr>\n\n 85<\/td>\n Figure 28 \u2013 Common actors in a distribution system with FLISR using SDFV <\/td>\n<\/tr>\n \n 91<\/td>\n 5.4 Use case 3: FLISR based on centralized control
5.4.1 General
5.4.2 Use case 3a\uff1aFLISR in a radial feeder based on centralized control <\/td>\n<\/tr>\n\n 93<\/td>\n Figure 29 \u2013 Centralized FLISR in a radial feeder \u2013 Use cases <\/td>\n<\/tr>\n \n 94<\/td>\n Figure 30 \u2013 Centralized FLISR for radial feeder \u2013 Fault location sequence diagram <\/td>\n<\/tr>\n \n 95<\/td>\n Figure 31 \u2013 Centralized FLISR for radial feeder \u2013 Fault isolation sequence diagram
Figure 32 \u2013 Centralized FLISR for radial feeder \u2013 Service restoration sequence diagram <\/td>\n<\/tr>\n\n 100<\/td>\n 5.4.3 Use case 3b: FLISR in an open loop feeder based on centralized control <\/td>\n<\/tr>\n \n 102<\/td>\n Figure 33 \u2013 Centralized FLISR for open loop \u2013 Use case breakdown <\/td>\n<\/tr>\n \n 103<\/td>\n Figure 34 \u2013 Centralized FLISR for open loop \u2013 Service restoration sequence diagram <\/td>\n<\/tr>\n \n 106<\/td>\n 5.5 Use case 4: FLISR based on distributed control
5.5.1 General <\/td>\n<\/tr>\n\n 107<\/td>\n 5.5.2 Use case 4a: FLISR in an open loop network based on distributed control ( Type A <\/td>\n<\/tr>\n \n 109<\/td>\n Figure 35 \u2013 A distributed DAS for an open loop overhead feeder <\/td>\n<\/tr>\n \n 112<\/td>\n Figure 36 \u2013 Distributed FLISR in an open loop network \u2013 Upstream use cases breakdown <\/td>\n<\/tr>\n \n 113<\/td>\n Figure 37 \u2013 Distributed FLISR in an open loop network \u2013 Operation use cases breakdown <\/td>\n<\/tr>\n \n 114<\/td>\n Figure 38 \u2013 Distributed FLISR in an open loop network \u2013 Topology discovery sequence diagram (1 of 2) <\/td>\n<\/tr>\n \n 116<\/td>\n Figure 39 \u2013 Distributed FLISR in an open loop network \u2013 FLISR operation sequence diagram (1 of 5) <\/td>\n<\/tr>\n \n 131<\/td>\n 5.5.3 Use case 4b: FLISR based on distributed control \u2013 Type B <\/td>\n<\/tr>\n \n 133<\/td>\n Figure 40 \u2013 Logical selectivity \u2013 FLI along the MV feeder <\/td>\n<\/tr>\n \n 134<\/td>\n Figure 41 \u2013 Logical selectivity \u2013 FLI inside the EU plant <\/td>\n<\/tr>\n \n 135<\/td>\n Figure 42 \u2013 Logical selectivity \u2013 FLI along the MV feeder and anti-islanding <\/td>\n<\/tr>\n \n 136<\/td>\n Figure 43 \u2013 Distributed FLISR 4b \u2013 Use case breakdown <\/td>\n<\/tr>\n \n 137<\/td>\n Figure 44 \u2013 Distributed FLISR 4b \u2013 For further analysis <\/td>\n<\/tr>\n \n 148<\/td>\n 5.6 Use case 5: Centralized Voltage and Var Control
5.6.1 Description of the use case <\/td>\n<\/tr>\n\n 150<\/td>\n 5.6.2 Diagrams of use case
Figure 45 \u2013 Volt-Var Control \u2013 Use case breakdown <\/td>\n<\/tr>\n\n 151<\/td>\n 5.6.3 Technical details
Figure 46 \u2013 Volt-Var Control \u2013 Sequence diagram <\/td>\n<\/tr>\n\n 152<\/td>\n 5.6.4 Step by step analysis of use case <\/td>\n<\/tr>\n \n 154<\/td>\n 5.6.5 Information exchanged
5.7 Use case 6: Anti-islanding protection based on communications
5.7.1 Description of the use case <\/td>\n<\/tr>\n\n 155<\/td>\n Figure 47 \u2013 Possible fault location on the feeder <\/td>\n<\/tr>\n \n 156<\/td>\n 5.7.2 Diagrams of use case
Figure 48 \u2013 Anti-islanding protection \u2013 Use case breakdown <\/td>\n<\/tr>\n\n 157<\/td>\n Figure 49 \u2013 Anti-islanding protection \u2013 Role diagram <\/td>\n<\/tr>\n \n 158<\/td>\n Figure 50 \u2013 Anti-islanding protection \u2013 Sequence diagram <\/td>\n<\/tr>\n \n 159<\/td>\n 5.7.3 Technical details <\/td>\n<\/tr>\n \n 160<\/td>\n 5.7.4 Step by step analysis of use case <\/td>\n<\/tr>\n \n 163<\/td>\n 5.7.5 Information exchanged
5.8 Use Case 7: Automatic transfer switch
5.8.1 Description of the use case <\/td>\n<\/tr>\n\n 164<\/td>\n 5.8.2 Diagrams of use case <\/td>\n<\/tr>\n \n 165<\/td>\n Figure 51 \u2013 Automatic transfer switch \u2013 Scenario flowchart
Figure 52 \u2013 Automatic transfer switch \u2013 Use cases breakdown <\/td>\n<\/tr>\n\n 166<\/td>\n 5.8.3 Technical details
5.8.4 Step by step analysis of use case <\/td>\n<\/tr>\n\n 167<\/td>\n Figure 53 \u2013 Automatic transfer switch \u2013 Activity flowchart <\/td>\n<\/tr>\n \n 168<\/td>\n 5.8.5 Information exchanged
5.9 Use Case 8: Monitor energy flows (Energy flow related Use cases)
5.9.1 Use case breakdown <\/td>\n<\/tr>\n\n 169<\/td>\n Figure 54 \u2013 Monitor energy flows \u2013 use case breakdown <\/td>\n<\/tr>\n \n 170<\/td>\n 5.9.2 Monitor Energy flows
Figure 55 \u2013 Sequence diagram for the \u201cMonitor energy flows\u201d use case <\/td>\n<\/tr>\n\n 171<\/td>\n 5.9.3 Elaborate the direction of the energy flow <\/td>\n<\/tr>\n \n 174<\/td>\n 5.10 Use Case 9: Environment situation awareness
5.10.1 Description of the use case <\/td>\n<\/tr>\n\n 175<\/td>\n Figure 56 \u2013 Environment situation awareness \u2013 Use cases breakdown <\/td>\n<\/tr>\n \n 176<\/td>\n Figure 57 \u2013 Environment situation awareness \u2013 Sequence diagram <\/td>\n<\/tr>\n \n 177<\/td>\n 5.11 Use case 10\uff1aConfiguration of IEDs participating in distributed control
5.11.1 Description of the use case <\/td>\n<\/tr>\n\n 180<\/td>\n Figure 58 \u2013 The schematic diagram of remote configuration process <\/td>\n<\/tr>\n \n 181<\/td>\n Figure 59 \u2013 Configuration of IEDs participating in distributed control \u2013 Use case diagram <\/td>\n<\/tr>\n \n 182<\/td>\n Figure 60 \u2013 Configuration of IEDs participating in distributed control \u2013 Sequence diagram (1 of 2) <\/td>\n<\/tr>\n \n 192<\/td>\n 6 Information models
6.1 Mapping of requirements on LNs
6.1.1 Mapping of the requirements of Fault Identification and report
Table 5 \u2013 Mapping of Fault Identification and report use case 1 requirements onto LNs <\/td>\n<\/tr>\n\n 194<\/td>\n 6.1.2 Mapping of the requirements of FLISR based on local control \u2013 Type 2
Figure 61 \u2013 Possible arrangement of LNs to support fault passage indication <\/td>\n<\/tr>\n\n 195<\/td>\n Figure 62 \u2013 Typical Arrangement of LNs to support FLISRusing sectionalizers detecting fault current
Table 6 \u2013 Mapping of FLISR using sectionalizers detecting faultcurrent use case 2a requirements onto LNs <\/td>\n<\/tr>\n\n 196<\/td>\n Figure 63 \u2013 Typical Arrangement of LNs to support FLISR using SDFV
Figure 64 \u2013 Logical arrangement of LNs to support FLISR using SDFV <\/td>\n<\/tr>\n\n 197<\/td>\n 6.1.3 Mapping of the requirements of FLISR based on centralized control \u2013 Type 3
Table 7 \u2013 Mapping of FLISR using SDFV use case 2b requirements onto LNs <\/td>\n<\/tr>\n\n 198<\/td>\n 6.1.4 Mapping of the requirements of FLISR based on distributed control \u2013 Type 4
Figure 65 \u2013 Typical Arrangement of LNs to FLISR based on centralized control
Table 8 \u2013 Mapping of Distributed FLISR (fault location) use case 4a onto LNs <\/td>\n<\/tr>\n\n 199<\/td>\n Figure 66 \u2013 Typical arrangement of LNs to support distributed fault location (case 4a) <\/td>\n<\/tr>\n \n 200<\/td>\n Figure 67 \u2013 Typical arrangement of LNs (between FeCtl)to support distributed fault location (case 4a)
Table 9 \u2013 Mapping of Distributed FLISR (fault isolation) use case 4a onto LNs <\/td>\n<\/tr>\n\n 201<\/td>\n Figure 68 \u2013 Typical arrangement of LNs to support distributed fault isolation (case 4a)
Figure 69 \u2013 Typical arrangement of LNs (between FeCtl)to support distributed fault isolation (case 4a) <\/td>\n<\/tr>\n\n 202<\/td>\n Figure 70 \u2013 Possible arrangement to support distributed service restoration
Table 10 \u2013 Mapping of Distributed FLISR (service restoration) use case 4a onto LNs <\/td>\n<\/tr>\n\n 203<\/td>\n Figure 71 \u2013 Break down of LNs and relationshipsto support distributed service restoration <\/td>\n<\/tr>\n \n 204<\/td>\n Table 11 \u2013 Mapping of Distributed FLISR use case 4b requirements onto LNs <\/td>\n<\/tr>\n \n 205<\/td>\n Figure 72 \u2013 Possible LN arrangement of breakers related functions,contributing to distributed FLISR (case 4b) <\/td>\n<\/tr>\n \n 206<\/td>\n 6.1.5 Mapping of the requirements of VVC use case \u2013 Type 5
Figure 73 \u2013 Possible LN arrangement of disconnectors related functions,contributing to distributed FLISR (case 4b) <\/td>\n<\/tr>\n\n 207<\/td>\n Figure 74 \u2013 Possible LN arrangement for the mapping for tap changer control <\/td>\n<\/tr>\n \n 208<\/td>\n 6.1.6 Mapping of the requirements of anti-islanding protection use case \u2013 Type 6
Figure 75 \u2013 Possible LN arrangement for the mapping for capacitor bank control
Table 12 \u2013 Mapping of anti-islanding use case requirements onto LNs <\/td>\n<\/tr>\n\n 209<\/td>\n 6.1.7 Mapping of the requirements of automatic transfer switch use case \u2013 Type 7
Figure 76 \u2013 Breakdown of LNs and relationships to supportunintentional islanding protection <\/td>\n<\/tr>\n\n 210<\/td>\n Table 13 \u2013 Mapping of automatic transfer switch use case requirements onto LNs <\/td>\n<\/tr>\n \n 211<\/td>\n 6.1.8 Mapping of the requirements of Monitor energy flows related Use case \u2013 Type 8
Figure 77 \u2013 Possible arrangement of LNs to perform automatic transfer switch <\/td>\n<\/tr>\n\n 212<\/td>\n 6.1.9 Mapping of Environment situation awareness use case \u2013 Type 9
Figure 78 \u2013 Possible arrangement of LNs to Monitor energy flows related Use cases
Table 14 \u2013 Energy flow related use case requirement mapping over LNs <\/td>\n<\/tr>\n\n 213<\/td>\n Table 15 \u2013 Mapping of Environment situation awareness use casesto existing or new LNs <\/td>\n<\/tr>\n \n 214<\/td>\n Figure 79 \u2013 Possible arrangement of LNs to support Environmentsituation awareness use cases <\/td>\n<\/tr>\n \n 215<\/td>\n 6.2 Mapping summary of the set of UCs over the LNs (existing or new) <\/td>\n<\/tr>\n \n 216<\/td>\n 7 Logical node classes and data objects modelling
7.1 General
7.2 Logical node classes
7.2.1 General
7.2.2 Abstract LN of 90-6 namespacce (Abstract90-6LNs)
Figure 80 \u2013 Class diagram LogicalNodes_90_6::LogicalNodes_90_6 <\/td>\n<\/tr>\n\n 217<\/td>\n Figure 81 \u2013 Class diagram Abstract90-6LNs::LN AbstractLN 90_6 <\/td>\n<\/tr>\n \n 218<\/td>\n Table 16 \u2013 Data objects of AutomatedSequenceLN <\/td>\n<\/tr>\n \n 219<\/td>\n Table 17 \u2013 Data objects of AutomaticSwitchingLN <\/td>\n<\/tr>\n \n 221<\/td>\n 7.2.3 LN of Group A (LNGroupA_90_6)
Figure 82 \u2013 Statechart diagram LNGroupA_90_6::AATS Generic state-machine <\/td>\n<\/tr>\n\n 222<\/td>\n Figure 83 \u2013 Statechart diagram LNGroupA_90_6::AATS Normal-Back-up <\/td>\n<\/tr>\n \n 223<\/td>\n Figure 84 \u2013 Class diagram LNGroupA_90_6::LN GroupA 90_6 <\/td>\n<\/tr>\n \n 224<\/td>\n Table 18 \u2013 Data objects of ASWI <\/td>\n<\/tr>\n \n 226<\/td>\n Table 19 \u2013 Data objects of AATS <\/td>\n<\/tr>\n \n 228<\/td>\n Table 20 \u2013 Data objects of AFSI <\/td>\n<\/tr>\n \n 229<\/td>\n Table 21 \u2013 Data objects of AFSL <\/td>\n<\/tr>\n \n 231<\/td>\n Table 22 \u2013 Data objects of ASRC <\/td>\n<\/tr>\n \n 232<\/td>\n 7.2.4 LN of Group D (LNGroupD_90_6) <\/td>\n<\/tr>\n \n 233<\/td>\n Figure 85 \u2013 Class diagram LNGroupD_90_6::LN GroupD 90_6 <\/td>\n<\/tr>\n \n 234<\/td>\n 7.2.5 LN of Group K (LNGroupK_90_6)
Table 23 \u2013 Data objects of DISL <\/td>\n<\/tr>\n\n 235<\/td>\n Figure 86 \u2013 Class diagram LNGroupK_90_6::LN GroupK 90_6 <\/td>\n<\/tr>\n \n 236<\/td>\n Table 24 \u2013 Data objects of KFIM <\/td>\n<\/tr>\n \n 237<\/td>\n Table 25 \u2013 Data objects of KILL <\/td>\n<\/tr>\n \n 238<\/td>\n 7.2.6 LN of Group M (LNGroupM_90_6)
Figure 87 \u2013 Class diagram LNGroupM_90_6::LN GroupM (1) 90_6 <\/td>\n<\/tr>\n\n 239<\/td>\n Figure 88 \u2013 Class diagram LNGroupM_90_6::LN GroupM (2) 90_6 <\/td>\n<\/tr>\n \n 240<\/td>\n Table 26 \u2013 Data objects of MENVExt <\/td>\n<\/tr>\n \n 242<\/td>\n Table 27 \u2013 Data objects of MMETExt <\/td>\n<\/tr>\n \n 244<\/td>\n Table 28 \u2013 Data objects of MMTNExt <\/td>\n<\/tr>\n \n 246<\/td>\n Table 29 \u2013 Data objects of MMTRExt <\/td>\n<\/tr>\n \n 248<\/td>\n Table 30 \u2013 Data objects of MMXNExt <\/td>\n<\/tr>\n \n 249<\/td>\n Table 31 \u2013 Data objects of MMXUExt <\/td>\n<\/tr>\n \n 251<\/td>\n 7.2.7 LN from Group P (LNGroupP_90_6)
Figure 89 \u2013 Class diagram LNGroupP_90_6::LN GroupP 90_6
Table 32 \u2013 Data objects of PTRCExt <\/td>\n<\/tr>\n\n 253<\/td>\n 7.2.8 LN of Group R (LNGroupR_90_6)
Figure 90 \u2013 Class diagram LNGroupR_90_6::LN GroupR 90_6
Table 33 \u2013 Data objects of RRFV <\/td>\n<\/tr>\n\n 255<\/td>\n 7.2.9 LN of Group S (LNGroupS_90_6)
Figure 91 \u2013 Class diagram LNGroupS_90_6::LN GroupS (1) 90_6 <\/td>\n<\/tr>\n\n 256<\/td>\n Figure 92 \u2013 Class diagram LNGroupS_90_6::LN GroupS (2) 90_6 <\/td>\n<\/tr>\n \n 257<\/td>\n Table 34 \u2013 Data objects of SCPI <\/td>\n<\/tr>\n \n 258<\/td>\n Table 35 \u2013 Data objects of SFOD <\/td>\n<\/tr>\n \n 259<\/td>\n Table 36 \u2013 Data objects of SFPI <\/td>\n<\/tr>\n \n 261<\/td>\n Table 37 \u2013 Data objects of SFST <\/td>\n<\/tr>\n \n 262<\/td>\n Table 38 \u2013 Data objects of SGPD <\/td>\n<\/tr>\n \n 264<\/td>\n Table 39 \u2013 Data objects of SSMK <\/td>\n<\/tr>\n \n 265<\/td>\n Table 40 \u2013 Data objects of SPSE <\/td>\n<\/tr>\n \n 266<\/td>\n Table 41 \u2013 Data objects of SVPI <\/td>\n<\/tr>\n \n 267<\/td>\n 7.3 Data semantics
Table 42 \u2013 Attributes defined on classes of LogicalNodes_90_6 package <\/td>\n<\/tr>\n\n 273<\/td>\n 7.4 Enumerated data attribute types
7.4.1 General <\/td>\n<\/tr>\n\n 274<\/td>\n 7.4.2 Actual source (ActualSourceKind enumeration)
Figure 93 \u2013 Class diagram DOEnums_90_6::DO Enumerations 90_6 <\/td>\n<\/tr>\n\n 275<\/td>\n 7.4.3 AffectedPhases90_6Kind enumeration
7.4.4 ATSAutoReturnModeKind enumeration
Table 43 \u2013 Literals of ActualSourceKind
Table 44 \u2013 Literals of AffectedPhases90_6Kind <\/td>\n<\/tr>\n\n 276<\/td>\n 7.4.5 ATSSequenceResultKind enumeration
7.4.6 ATSSequenceStatusKind enumeration
Table 45 \u2013 Literals of ATSAutoReturnModeKind
Table 46 \u2013 Literals of ATSSequenceResultKind <\/td>\n<\/tr>\n\n 277<\/td>\n 7.4.7 FaultConfirmationModeKind enumeration
7.4.8 FaultPermanenceKind enumeration
Table 47 \u2013 Literals of ATSSequenceStatusKind
Table 48 \u2013 Literals of FaultConfirmationModeKind <\/td>\n<\/tr>\n\n 278<\/td>\n 7.4.9 FaultSourceTypeKind enumeration
7.4.10 GateStatusKind enumeration
Table 49 \u2013 Literals of FaultPermanenceKind
Table 50 \u2013 Literals of FaultSourceTypeKind
Table 51 \u2013 Literals of GateStatusKind <\/td>\n<\/tr>\n\n 279<\/td>\n 7.4.11 IslandingStateKind enumeration
7.4.12 momentary close request in case of use of RFV automation (MomentaryCloseResultKind enumeration)
7.4.13 NormalSourceKind enumeration
7.4.14 RFVFuncTypeKind enumeration
Table 52 \u2013 Literals of IslandingStateKind
Table 53 \u2013 Literals of MomentaryCloseResultKind
Table 54 \u2013 Literals of NormalSourceKind <\/td>\n<\/tr>\n\n 280<\/td>\n 7.4.15 Result of the latest restoration process (SequenceEndResultKind enumeration)
7.4.16 SequenceStatusKind enumeration
Table 55 \u2013 Literals of RFVFuncTypeKind
Table 56 \u2013 Literals of SequenceEndResultKind
Table 57 \u2013 Literals of SequenceStatusKind <\/td>\n<\/tr>\n\n 281<\/td>\n 7.5 SCL enumerations (from DOEnums_90_6) <\/td>\n<\/tr>\n \n 283<\/td>\n 8 Communication and architectures
8.1 Types of communication architecture
8.1.1 General
8.1.2 Digital communication with remote monitoring
Figure 94 \u2013 Centralised distribution automation architecture with monitoring <\/td>\n<\/tr>\n\n 284<\/td>\n 8.1.3 Digital communications with remote monitoring and control
8.1.4 Digital communication with distributed control
Figure 95 \u2013 Centralised distribution automation architecturewith monitoring and control
Figure 96 \u2013 Distributed control architecture <\/td>\n<\/tr>\n\n 285<\/td>\n 8.2 Architectures matching use cases
Figure 97 \u2013 Mixed distribution automation architecture combiningdistributed and centralised monitoring and control
Table 58 \u2013 Distribution automation architecture matching the use cases <\/td>\n<\/tr>\n\n 286<\/td>\n 8.3 Cyber-security
9 Configuration
Table 59 \u2013 Mapping information models onto the protocol <\/td>\n<\/tr>\n\n 287<\/td>\n Figure 98 \u2013 Distributed feeder automation system for an open loop overhead feeder <\/td>\n<\/tr>\n \n 288<\/td>\n Figure 99 \u2013 Configuration process for the information exchange betweensubstation automation and grid automation systems <\/td>\n<\/tr>\n \n 296<\/td>\n Annex A (informative)Interpretation of logical node tables
A.1 General interpretation of logical node tables
A.2 Conditions for element presence
Table A.1 \u2013 Interpretation of logical node tables
Table A.2 \u2013 Conditions for presence of elements within a context <\/td>\n<\/tr>\n\n 299<\/td>\n Annex B (informative)Typical Grid topologies considered in this report
Figure B.1 \u2013 Typical grid topologies <\/td>\n<\/tr>\n\n 300<\/td>\n Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" \n\n
\n Published By<\/td>\n Publication Date<\/td>\n Number of Pages<\/td>\n<\/tr>\n \n BSI<\/b><\/a><\/td>\n 2018<\/td>\n 306<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":255713,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2641],"product_tag":[],"class_list":{"0":"post-255711","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-bsi","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/255711","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/255713"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=255711"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=255711"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=255711"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}