{"id":194647,"date":"2024-10-19T12:21:05","date_gmt":"2024-10-19T12:21:05","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-iec-62704-1-2017\/"},"modified":"2024-10-25T04:52:06","modified_gmt":"2024-10-25T04:52:06","slug":"ieee-iec-62704-1-2017","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-iec-62704-1-2017\/","title":{"rendered":"IEEE IEC 62704 1 2017"},"content":{"rendered":"
New IEEE Standard – Active.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 4 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 5 Finite-difference time-domain method \u2013 basic definition <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 6 SAR calculation and averaging 6.1 Calculation of SAR in FDTD voxels Figures Figure 1 \u2013 Field components on voxel edges <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 6.2 SAR averaging 6.2.1 General <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 6.2.2 Calculation of the peak spatial-average SAR Figure 2 \u2013 Flow chart of the SAR averaging algorithm <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Figure 3 \u2013 Illustration of valid and used voxels in a valid averaging cube centred on the highlighted voxel and an invalid averaging volume for which a new cube has to be expanded about the surface voxel because it contains more than 10\u00a0% of background material Tables Table 1 \u2013 Voxel states during SAR averaging <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Figure 4 \u2013 Valid, used and partially used voxels <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 6.2.3 Calculation of the whole body average SAR 6.2.4 Reporting peak spatial-average SAR and whole body average SAR 6.2.5 Referencing peak spatial-average SAR and whole body average SAR Figure 5 \u2013 \u201cUnused\u201d location <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 6.3 Power scaling <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 7 SAR simulation uncertainty 7.1 Considerations for the uncertainty evaluation <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 7.2 Uncertainty of the test setup with respect to simulation parameters 7.2.1 General 7.2.2 Positioning Table 2 \u2013 Factors contributing to the uncertainty of experimentaland numerical SAR evaluation <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 7.2.3 Mesh resolution <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 7.2.4 Absorbing boundary conditions 7.2.5 Power budget 7.2.6 Convergence <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 7.2.7 Dielectrics of the phantom or body model Table 3 \u2013 Budget of the uncertainty contributions of the numerical algorithm and of the rendering of the test- or simulation-setup <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 7.3 Uncertainty and validation of the developed numerical model of the DUT 7.3.1 General 7.3.2 Uncertainty of the DUT model (d \u2265 \u03bb\/2 or d \u2265 200\u00a0mm) <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 7.3.3 Uncertainty of the DUT model (d \u2265 \u03bb\/2 and \u2265 200\u00a0mm) <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 7.3.4 Model validation Table 4 \u2013 Budget of the uncertainty of the developed model of the DUT <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 7.4 Uncertainty budget <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 8 Code verification 8.1 General Table 5 \u2013 Numerical uncertainty budget <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 8.2 Code accuracy 8.2.1 Free space characteristics Figure 6 \u2013 Aligned parallel-plate waveguide and locations of theEy-field components to be recorded for TE-polarization <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 8.2.2 Planar dielectric boundaries Table 6 \u2013 Results of the evaluation of the numerical dispersion characteristics <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Table 7 \u2013 Results of the evaluation of the numerical reflection coefficient <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 8.2.3 Absorbing boundary conditions <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure 7 \u2013 Permissible power reflection coefficient (grey range) for the aligned absorbing boundary conditions <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Figure 8 \u2013 Tilted parallel-plate waveguide terminated with absorbing boundary conditions and locations of the Ey-field components to be recorded for TE-polarization <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 8.2.4 SAR averaging Figure 9 \u2013 Permissible power reflection coefficient (grey range) for the tilted absorbing boundary conditions <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Figure 10 \u2013 Sketch of the testing geometry of the averaging algorithm <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 8.3 Canonical benchmarks 8.3.1 Generic dipole Figure 11 \u2013 3D view of the SAR Star <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 8.3.2 Microstrip terminated with ABC Table 8 \u2013 Results of the dipole evaluation <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 8.3.3 SAR calculation SAM phantom \/ generic phone Figure 12 \u2013 Geometry of the microstrip line Table 9 \u2013 Results of the microstrip evaluation Table 10 \u2013 1\u00a0g and 10\u00a0g psSAR for the SAM phantom exposed to the generic phone for 1\u00a0W accepted antenna power as specified in [22] <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 8.3.4 Setup for system performance check Figure 13 \u2013 Geometry of the setup for the system performance check according to [31] <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Table 11 \u2013 Dielectric parameters of the setup (Table 1 of [31]) Table 12 \u2013 Mechanical parameters of the setup (Tables 1 and 2 of [31]) Table 13 \u2013 psSAR normalized to 1\u00a0W forward power and feedpoint impedance (Tables 3 and 4 of [31]) <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | Annex\u00a0A (normative)Fundamentals of the FDTD method <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure A.1 \u2013 Voxel showing the arrangement of the E- and H-field vector components on a staggered mesh <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Figure A.2 \u2013 Voxels with different dielectric propertiessurrounding a mesh edge with an Ey-component <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Annex\u00a0B (normative)SAR Star B.1 CAD files of the SAR Star B.2 Mesh lines for the SAR Star B.2.1 General B.2.2 Mesh lines for the homogeneous SAR Star <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | B.2.3 Mesh lines for the inhomogeneous SAR Star B.3 Evaluation of the SAR Star benchmark B.3.1 General B.3.2 File format of the benchmark output <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | B.3.3 Evaluation script <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Annex\u00a0C (informative)Practical considerations for the application of FDTD C.1 Overview <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | C.2 Practical considerations C.2.1 Computational requirements <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | C.2.2 Voxel size C.2.3 Stability C.2.4 Absorbing boundaries <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | C.2.5 Far-zone transformation C.3 Modelling requirements for sources and loads <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Figure C.1 \u2013 FDTD voltage source with source resistance Figure C.2 \u2013 Four magnetic field components surrounding the electric field component where the source is located <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | C.4 Calculation of S-parameters C.5 Calculation of power and efficiency <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | C.6 Non-uniform meshes <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Annex\u00a0D (informative)Background information ontissue modelling and anatomical models D.1 Dielectric tissue properties D.2 Anatomical models of the human body D.3 Recommended numerical models of experimental phantoms D.3.1 Experimental head phantom <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | D.3.2 Experimental body phantom <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEC\/IEEE International Standard for Determining the Peak Spatial Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices, 30 MHz – 6 GHz. Part 1: General Requirements for using the Finite Difference Time Domain (FDTD) Method for SAR Calculations<\/b><\/p>\n |