{"id":126125,"date":"2024-10-19T05:33:08","date_gmt":"2024-10-19T05:33:08","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-616762023\/"},"modified":"2024-10-24T23:18:07","modified_gmt":"2024-10-24T23:18:07","slug":"bs-en-iec-616762023","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-616762023\/","title":{"rendered":"BS EN IEC 61676:2023"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 4 General performance requirements for measurement of practical peak voltage measurements 4.1 Quantity to be measured 4.2 Limits of performance characteristics 4.2.1 Limits 4.2.2 Maximum error Tables Table 1 \u2013 Minimum effective ranges <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 4.2.3 Over and under range indications <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 4.2.4 Repeatability 4.2.5 Long term stability 4.3 Limits of variation for effects of influence quantities 4.3.1 Influence quantities 4.3.2 Minimum rated range of use <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 4.3.3 Reference conditions 4.3.4 Standard test conditions 4.3.5 Limits of variation Table 2 \u2013 Minimum rated range of use, reference conditions, standardtest conditions, limits of variation (\u00b1 L) and intrinsic error (E) overthe effective range of use, for the pertaining influence quantity <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 4.4 Performance test procedures 4.4.1 General remarks <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 4.4.2 Dependence of instrument response on voltage waveform and frequency Table 3 \u2013 Minimum test points and test values ofpractical peak voltage for influence quantities <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 4.4.3 Dependence of instrument response on anode angle 4.4.4 Dependence of instrument response on filtration 4.4.5 Dependence of instrument response on dose rate <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 4.4.6 Dependence of instrument response on irradiation time 4.4.7 Dependence of instrument response on field size 4.4.8 Dependence of instrument response on focus-to-detector distance <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 4.4.9 Dependence of instrument response on angle of incidence of radiation 4.4.10 Dependence of instrument response on angle of detector rotation with respect to the X-ray tube axis 4.4.11 Dependence of instrument response on temperature and humidity <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 4.4.12 Dependence of instrument response on operating voltage <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 4.4.13 Dependence of instrument response on electromagnetic compatibility <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 4.4.14 Additional tungsten filtration (tube aging) <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5 Special instrumental requirements and marking 5.1 Requirements for the complete instruments 5.2 General 5.3 Display 5.4 Range of measurement 5.5 Connectors and cables Table 4 \u2013 Maximum half-value layer (hvl) depending on anode angle <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6 Accompanying documents 6.1 General 6.2 Information provided 6.3 Instrument description 6.4 Detector 6.5 Delay time 6.6 Measurement window 6.7 Data outlet 6.8 Transport and storage <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Annex A (informative) Combined standard uncertainty Table A.1 \u2013 Example for assessment of the combined standard uncertainty \u2013 Instruments used for non-invasive measurement of X-ray tube voltage <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Annex B (informative) Additional information on practical peak voltage B.1 Overview B.2 Simplified formalism for the determination of the practical peak voltage \u00db <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figures Figure B.1 \u2013 Example of a waveform of a two-pulse generator Figure B.2 \u2013 Example of a waveform of a constant-voltage generator <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Figure B.3 \u2013 Example of falling load waveform Table B.1 \u2013 Values of 20 samples of the falling load waveform in Figure B.3 <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Table B.2 \u2013 Voltage bins, probability and weighting factors forthe 20 samples of the falling load waveform in Figure B.3 <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Table B.3 \u2013 Weighting factors for the 20 equally spaced samplesof the falling load waveform in Figure B.3 <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Bibliography <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Index of defined terms <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Medical electrical equipment. Dosimetric instruments used for non-invasive measurement of x-ray tube voltage in diagnostic radiology<\/b><\/p>\n |